3.120 \(\int \frac{\sinh ^6(e+f x)}{(a+b \sinh ^2(e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=344 \[ \frac{2 (2 a-3 b) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} \text{EllipticF}\left (\tan ^{-1}(\sinh (e+f x)),1-\frac{b}{a}\right )}{3 b^2 f (a-b)^2 \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac{\left (8 a^2-13 a b+3 b^2\right ) \tanh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 b^3 f (a-b)^2}-\frac{\left (8 a^2-13 a b+3 b^2\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right )}{3 b^3 f (a-b)^2 \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac{2 a (2 a-3 b) \sinh (e+f x) \cosh (e+f x)}{3 b^2 f (a-b)^2 \sqrt{a+b \sinh ^2(e+f x)}}-\frac{a \sinh ^3(e+f x) \cosh (e+f x)}{3 b f (a-b) \left (a+b \sinh ^2(e+f x)\right )^{3/2}} \]

[Out]

-(a*Cosh[e + f*x]*Sinh[e + f*x]^3)/(3*(a - b)*b*f*(a + b*Sinh[e + f*x]^2)^(3/2)) - (2*a*(2*a - 3*b)*Cosh[e + f
*x]*Sinh[e + f*x])/(3*(a - b)^2*b^2*f*Sqrt[a + b*Sinh[e + f*x]^2]) - ((8*a^2 - 13*a*b + 3*b^2)*EllipticE[ArcTa
n[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*(a - b)^2*b^3*f*Sqrt[(Sech[e + f*x]^2
*(a + b*Sinh[e + f*x]^2))/a]) + (2*(2*a - 3*b)*EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a
+ b*Sinh[e + f*x]^2])/(3*(a - b)^2*b^2*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) + ((8*a^2 - 13*a*b
 + 3*b^2)*Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x])/(3*(a - b)^2*b^3*f)

________________________________________________________________________________________

Rubi [A]  time = 0.366433, antiderivative size = 344, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {3188, 470, 578, 531, 418, 492, 411} \[ \frac{\left (8 a^2-13 a b+3 b^2\right ) \tanh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 b^3 f (a-b)^2}-\frac{\left (8 a^2-13 a b+3 b^2\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right )}{3 b^3 f (a-b)^2 \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac{2 a (2 a-3 b) \sinh (e+f x) \cosh (e+f x)}{3 b^2 f (a-b)^2 \sqrt{a+b \sinh ^2(e+f x)}}+\frac{2 (2 a-3 b) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right )}{3 b^2 f (a-b)^2 \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac{a \sinh ^3(e+f x) \cosh (e+f x)}{3 b f (a-b) \left (a+b \sinh ^2(e+f x)\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sinh[e + f*x]^6/(a + b*Sinh[e + f*x]^2)^(5/2),x]

[Out]

-(a*Cosh[e + f*x]*Sinh[e + f*x]^3)/(3*(a - b)*b*f*(a + b*Sinh[e + f*x]^2)^(3/2)) - (2*a*(2*a - 3*b)*Cosh[e + f
*x]*Sinh[e + f*x])/(3*(a - b)^2*b^2*f*Sqrt[a + b*Sinh[e + f*x]^2]) - ((8*a^2 - 13*a*b + 3*b^2)*EllipticE[ArcTa
n[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*(a - b)^2*b^3*f*Sqrt[(Sech[e + f*x]^2
*(a + b*Sinh[e + f*x]^2))/a]) + (2*(2*a - 3*b)*EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a
+ b*Sinh[e + f*x]^2])/(3*(a - b)^2*b^2*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) + ((8*a^2 - 13*a*b
 + 3*b^2)*Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x])/(3*(a - b)^2*b^3*f)

Rule 3188

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/Sqrt[1 - ff^2*x^2], x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !In
tegerQ[p]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(a*e^(2
*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c - a*d)*(p + 1)), x] + Dist[e^(2
*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) +
(a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 578

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[(g^(n - 1)*(b*e - a*f)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c -
 a*d)*(p + 1)), x] - Dist[g^n/(b*n*(b*c - a*d)*(p + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*S
imp[c*(b*e - a*f)*(m - n + 1) + (d*(b*e - a*f)*(m + n*q + 1) - b*n*(c*f - d*e)*(p + 1))*x^n, x], x], x] /; Fre
eQ[{a, b, c, d, e, f, g, q}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, 0]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\sinh ^6(e+f x)}{\left (a+b \sinh ^2(e+f x)\right )^{5/2}} \, dx &=\frac{\left (\sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^6}{\sqrt{1+x^2} \left (a+b x^2\right )^{5/2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac{a \cosh (e+f x) \sinh ^3(e+f x)}{3 (a-b) b f \left (a+b \sinh ^2(e+f x)\right )^{3/2}}+\frac{\left (\sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^2 \left (3 a+(4 a-3 b) x^2\right )}{\sqrt{1+x^2} \left (a+b x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{3 (a-b) b f}\\ &=-\frac{a \cosh (e+f x) \sinh ^3(e+f x)}{3 (a-b) b f \left (a+b \sinh ^2(e+f x)\right )^{3/2}}-\frac{2 a (2 a-3 b) \cosh (e+f x) \sinh (e+f x)}{3 (a-b)^2 b^2 f \sqrt{a+b \sinh ^2(e+f x)}}-\frac{\left (\sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{-2 a (2 a-3 b)+\left (-8 a^2+13 a b-3 b^2\right ) x^2}{\sqrt{1+x^2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 (a-b)^2 b^2 f}\\ &=-\frac{a \cosh (e+f x) \sinh ^3(e+f x)}{3 (a-b) b f \left (a+b \sinh ^2(e+f x)\right )^{3/2}}-\frac{2 a (2 a-3 b) \cosh (e+f x) \sinh (e+f x)}{3 (a-b)^2 b^2 f \sqrt{a+b \sinh ^2(e+f x)}}+\frac{\left (2 a (2 a-3 b) \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+x^2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 (a-b)^2 b^2 f}-\frac{\left (\left (-8 a^2+13 a b-3 b^2\right ) \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1+x^2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 (a-b)^2 b^2 f}\\ &=-\frac{a \cosh (e+f x) \sinh ^3(e+f x)}{3 (a-b) b f \left (a+b \sinh ^2(e+f x)\right )^{3/2}}-\frac{2 a (2 a-3 b) \cosh (e+f x) \sinh (e+f x)}{3 (a-b)^2 b^2 f \sqrt{a+b \sinh ^2(e+f x)}}+\frac{2 (2 a-3 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 (a-b)^2 b^2 f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac{\left (8 a^2-13 a b+3 b^2\right ) \sqrt{a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 (a-b)^2 b^3 f}+\frac{\left (\left (-8 a^2+13 a b-3 b^2\right ) \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{3 (a-b)^2 b^3 f}\\ &=-\frac{a \cosh (e+f x) \sinh ^3(e+f x)}{3 (a-b) b f \left (a+b \sinh ^2(e+f x)\right )^{3/2}}-\frac{2 a (2 a-3 b) \cosh (e+f x) \sinh (e+f x)}{3 (a-b)^2 b^2 f \sqrt{a+b \sinh ^2(e+f x)}}-\frac{\left (8 a^2-13 a b+3 b^2\right ) E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 (a-b)^2 b^3 f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac{2 (2 a-3 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 (a-b)^2 b^2 f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac{\left (8 a^2-13 a b+3 b^2\right ) \sqrt{a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 (a-b)^2 b^3 f}\\ \end{align*}

Mathematica [C]  time = 2.03492, size = 207, normalized size = 0.6 \[ \frac{a \left (2 i a \left (8 a^2-17 a b+9 b^2\right ) \left (\frac{2 a+b \cosh (2 (e+f x))-b}{a}\right )^{3/2} \text{EllipticF}\left (i (e+f x),\frac{b}{a}\right )+\sqrt{2} b \sinh (2 (e+f x)) \left (-8 a^2+b (7 b-5 a) \cosh (2 (e+f x))+17 a b-7 b^2\right )-2 i a \left (8 a^2-13 a b+3 b^2\right ) \left (\frac{2 a+b \cosh (2 (e+f x))-b}{a}\right )^{3/2} E\left (i (e+f x)\left |\frac{b}{a}\right .\right )\right )}{6 b^3 f (a-b)^2 (2 a+b \cosh (2 (e+f x))-b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[e + f*x]^6/(a + b*Sinh[e + f*x]^2)^(5/2),x]

[Out]

(a*((-2*I)*a*(8*a^2 - 13*a*b + 3*b^2)*((2*a - b + b*Cosh[2*(e + f*x)])/a)^(3/2)*EllipticE[I*(e + f*x), b/a] +
(2*I)*a*(8*a^2 - 17*a*b + 9*b^2)*((2*a - b + b*Cosh[2*(e + f*x)])/a)^(3/2)*EllipticF[I*(e + f*x), b/a] + Sqrt[
2]*b*(-8*a^2 + 17*a*b - 7*b^2 + b*(-5*a + 7*b)*Cosh[2*(e + f*x)])*Sinh[2*(e + f*x)]))/(6*(a - b)^2*b^3*f*(2*a
- b + b*Cosh[2*(e + f*x)])^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.13, size = 868, normalized size = 2.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(f*x+e)^6/(a+b*sinh(f*x+e)^2)^(5/2),x)

[Out]

-1/3*((5*(-1/a*b)^(1/2)*a^2*b-7*(-1/a*b)^(1/2)*a*b^2)*sinh(f*x+e)*cosh(f*x+e)^4+(4*(-1/a*b)^(1/2)*a^3-11*(-1/a
*b)^(1/2)*a^2*b+7*(-1/a*b)^(1/2)*a*b^2)*cosh(f*x+e)^2*sinh(f*x+e)+(cosh(f*x+e)^2)^(1/2)*(b/a*cosh(f*x+e)^2+(a-
b)/a)^(1/2)*b*(4*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a^2-7*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),
(a/b)^(1/2))*a*b+3*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b^2-8*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2
),(a/b)^(1/2))*a^2+13*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a*b-3*EllipticE(sinh(f*x+e)*(-1/a*b)^(
1/2),(a/b)^(1/2))*b^2)*cosh(f*x+e)^2+4*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(
f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a^3-11*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(si
nh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a^2*b+10*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*Ellipti
cF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a*b^2-3*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*Ell
ipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b^3-8*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*E
llipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a^3+21*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2
)*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a^2*b-16*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)
^(1/2)*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a*b^2+3*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e
)^2)^(1/2)*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b^3)/(-1/a*b)^(1/2)/(a+b*sinh(f*x+e)^2)^(3/2)/(a-
b)^2/b^2/cosh(f*x+e)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sinh \left (f x + e\right )^{6}}{{\left (b \sinh \left (f x + e\right )^{2} + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)^6/(a+b*sinh(f*x+e)^2)^(5/2),x, algorithm="maxima")

[Out]

integrate(sinh(f*x + e)^6/(b*sinh(f*x + e)^2 + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sinh \left (f x + e\right )^{2} + a} \sinh \left (f x + e\right )^{6}}{b^{3} \sinh \left (f x + e\right )^{6} + 3 \, a b^{2} \sinh \left (f x + e\right )^{4} + 3 \, a^{2} b \sinh \left (f x + e\right )^{2} + a^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)^6/(a+b*sinh(f*x+e)^2)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sinh(f*x + e)^2 + a)*sinh(f*x + e)^6/(b^3*sinh(f*x + e)^6 + 3*a*b^2*sinh(f*x + e)^4 + 3*a^2*b*
sinh(f*x + e)^2 + a^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)**6/(a+b*sinh(f*x+e)**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sinh \left (f x + e\right )^{6}}{{\left (b \sinh \left (f x + e\right )^{2} + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)^6/(a+b*sinh(f*x+e)^2)^(5/2),x, algorithm="giac")

[Out]

integrate(sinh(f*x + e)^6/(b*sinh(f*x + e)^2 + a)^(5/2), x)